Voltar

Fluxo máximo com custo minimo - Grafos

0 Curtidas
/**
 *   ///////////////////////
 *   // MIN COST MAX FLOW //
 *   ///////////////////////
 *
 *   Authors: Frank Chu, Igor Naverniouk
 **/

/*********************
 * Min cost max flow * (Edmonds-Karp relabelling + fast heap Dijkstra)
 *********************
 * Takes a directed graph where each edge has a capacity ('cap') and a
 * cost per unit of flow ('cost') and returns a maximum flow network
 * of minimal cost ('fcost') from s to t. USE mcmf3.cpp FOR DENSE GRAPHS!
 *
 * PARAMETERS:
 *      - cap (global): adjacency matrix where cap[u][v] is the capacity
 *          of the edge u->v. cap[u][v] is 0 for non-existent edges.
 *      - cost (global): a matrix where cost[u][v] is the cost per unit
 *          of flow along the edge u->v. If cap[u][v] == 0, cost[u][v] is
 *          ignored. ALL COSTS MUST BE NON-NEGATIVE!
 *      - n: the number of vertices ([0, n-1] are considered as vertices).
 *      - s: source vertex.
 *      - t: sink.
 * RETURNS:
 *      - the flow
 *      - the total cost through 'fcost'
 *      - fnet contains the flow network. Careful: both fnet[u][v] and
 *          fnet[v][u] could be positive. Take the difference.
 * COMPLEXITY:
 *      - Worst case: O(m*log(m)*flow  
using namespace std;

// the maximum number of vertices + 1
#define NN 1024

// adjacency matrix (fill this up)
int cap[NN][NN];

// cost per unit of flow matrix (fill this up)
int cost[NN][NN];

// flow network and adjacency list
int fnet[NN][NN], adj[NN][NN], deg[NN];

// Dijkstra's predecessor, depth and priority queue
int par[NN], d[NN], q[NN], inq[NN], qs;

// Labelling function
int pi[NN];

#define CLR(a, x) memset( a, x, sizeof( a ) )
#define Inf (INT_MAX/2)
#define BUBL {     t = q[i]; q[i] = q[j]; q[j] = t;     t = inq[q[i]]; inq[q[i]] = inq[q[j]]; inq[q[j]] = t; }

// Dijkstra's using non-negative edge weights (cost + potential)
#define Pot(u,v) (d[u] + pi[u] - pi[v])
bool dijkstra( int n, int s, int t )
{
    CLR( d, 0x3F );
    CLR( par, -1 );
    CLR( inq, -1 );
    //for( int i = 0; i < n; i++ ) d[i] = Inf, par[i] = -1;
    d[s] = qs = 0;
    inq[q[qs++] = s] = 0;
    par[s] = n;

    while( qs )
    {
        // get the minimum from q and bubble down
        int u = q[0]; inq[u] = -1;
        q[0] = q[--qs];
        if( qs ) inq[q[0]] = 0;
        for( int i = 0, j = 2*i + 1, t; j < qs; i = j, j = 2*i + 1 )
        {
            if( j + 1 < qs && d[q[j + 1]] < d[q[j]] ) j++;
            if( d[q[j]] >= d[q[i]] ) break;
            BUBL;
        }

        // relax edge (u,i) or (i,u) for all i;
        for( int k = 0, v = adj[u][k]; k < deg[u]; v = adj[u][++k] )
        {
            // try undoing edge v->u
            if( fnet[v][u] && d[v] > Pot(u,v) - cost[v][u] )
                d[v] = Pot(u,v) - cost[v][par[v] = u];

            // try using edge u->v
            if( fnet[u][v] < cap[u][v] && d[v] > Pot(u,v) + cost[u][v] )
                d[v] = Pot(u,v) + cost[par[v] = u][v];

            if( par[v] == u )
            {
                // bubble up or decrease key
                if( inq[v] < 0 ) { inq[q[qs] = v] = qs; qs++; }
                for( int i = inq[v], j = ( i - 1 )/2, t;
                     d[q[i]] < d[q[j]]; i = j, j = ( i - 1 )/2 )
                     BUBL;
            }
        }
    }

    for( int i = 0; i < n; i++ ) if( pi[i] < Inf ) pi[i] += d[i];

    return par[t] >= 0;
}
#undef Pot

int mcmf4( int n, int s, int t, int &fcost )
{
    // build the adjacency list
    CLR( deg, 0 );
    for( int i = 0; i < n; i++ )
    for( int j = 0; j < n; j++ )
        if( cap[i][j] || cap[j][i] ) adj[i][deg[i]++] = j;

    CLR( fnet, 0 );
    CLR( pi, 0 );
    int flow = fcost = 0;

    // repeatedly, find a cheapest path from s to t
    while( dijkstra( n, s, t ) )
    {
        // get the bottleneck capacity
        int bot = INT_MAX;
        for( int v = t, u = par[v]; v != s; u = par[v = u] )
            bot 
#include 
using namespace std;

int main()
{
  int numV;
  //  while ( cin >> numV && numV ) {
  cin >> numV;
    memset( cap, 0, sizeof( cap ) );

    int m, a, b, c, cp;
    int s, t;
    cin >> m;
    cin >> s >> t;

    // fill up cap with existing capacities.
    // if the edge u->v has capacity 6, set cap[u][v] = 6.
    // for each cap[u][v] > 0, set cost[u][v] to  the
    // cost per unit of flow along the edge i->v
    for (int i=0; i> a >> b >> cp >> c;
      cost[a][b] = c; // cost[b][a] = c;
      cap[a][b] = cp; // cap[b][a] = cp;
    }

    int fcost;
    int flow = mcmf3( numV, s, t, fcost );
    cout << "flow: " << flow << endl;
    cout << "cost: " << fcost << endl;

    return 0;
}
Problemas relacionados
  Nome Comentário
Ainda não há nenhum problema relacionado a esse conteúdo

Comentários


Postagens neste fórum só são permitidas para membros com conta ativa. Por favor, efetue login or cadastro para postar.